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Relativistic fixed-energy amplitudes of the step and square
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Abstract. The fixed-energy amplitudes (Green’s function) of the one-dimensional relativistic
Wood–Saxon, step and square well potential problems are calculated with the help of Kleinert’s
path integral technique for relativistic potential problems.

1. Introduction

During the last 15 years, considerable progress has been made in solving path integrals
of potential problems [1, 2]. It is no exaggeration to say that practically all problems in
quantum mechanics solved exactly by the Schrödinger equation can now be done by path
integral (PI). But, the same thing cannot be said for relativistic potential problems.

Particles moving at large velocities near the speed of light are called relativistic particles.
If such particles interact with each other or with an external potential, they exhibit quantum
effects which cannot be described by their orbital fluctuations alone. At very short interaction
times, additional particles or pairs of particles and antiparticles are created or annihilated,
and the total number of particle orbits is no longer invariant. Ordinary quantum mechanics
which always assumes a fixed number of particles cannot describe such processes. The
associated path integral has the same problem since it is a sum over a given set of particle
orbits. Thus, even if relativistic kinematics is properly incorporated, a path integral cannot
yield an accurate description of relativistic particles. An extension becomes necessary which
includes an arbitrary number of mutually linked and branching fluctuating orbits.

Fortunately, a more efficient way of dealing with relativistic particles exists. It is
provided by quantum field theory (see, e.g. [3, 4]). The branch points of newly created
particle lines are considered by anharmonic terms in the field action. The calculation
of their effects proceeds by the perturbation theory performed systematically in terms of
Feynman diagrams. They consist of lines and vertices representing direct pictures of the
various interconnections of particle orbits.

Nevertheless, from the historical point of view, the attempt at finding a relativistic
generalization of the Schrödinger equation is an important step towards the development of
quantum field theory. For this reason, many textbooks on quantum field theory begin with a
discussion on relativistic quantum mechanics. So far, only a few relativistic problems have
been discussed by PI (those in [1, 5–7]). In this paper, we shall solve the other relativistic
problems by path integral. The treatment will be restricted to spinless particles. Problems
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whose PIs will be calculated are: (1) a one-dimensional relativistic particle moving in
the Wood–Saxon potential, (2) a relativistic particle moving in the step potential and (3)
a relativistic particle moving in the one-dimensional square well potential. In view of
non-relativistic solutions of these problems, details can be found in many textbooks. The
potential in (1) with an impenetrable wall atx = 0 has been widely used for the optical
potential and has been very successful at reproducing experimental scattering cross sections
for different projectiles (see, e.g. [8]). System (2) is a favourite model for explaining a
number of basic quantum effects. Model (3) has been used to describe approximately
phenomena caused byπ+–π− pairs in the nucleus [9]. During the last 15 years, the PIs of
these systems in non-relativistic case have been solved [1, 10–14].

This paper is organized as follows. In section 2, we briefly review the formulation of
the PI for the relativistic potential problems. In section 3, with the help of the formuation
in section 1, we present the fixed-energy amplitude of the relativistic Wood–Saxon potential
problem. Furthermore, we solve the relativistic step and square well problems by suitable
limits and auxiliaryδ-function perturbation. Our conclusions are summarized in section 4.

2. Path integrals for relativistic particle orbits

To obtain a PI representation of the Green’s function of the Klein–Gorden field, we use the
following action [6]

A =
∫ λb

λa

dλ

[
M

2ρ(λ)
x ′2(λ)+ Mc

2

2
ρ(λ)

]
(1)

whereρ(λ) is an extra dimensionless fluctuating variable andx = (x, τ ) is a(D+1) vector
with the invariant lengthx = √x2+ c2τ 2, i.e. the metric has the form

(gµν) = diag(1, . . . ,1, c2). (2)

The action of equation (1) coincides with the classical action

Acl = Mc
∫ λb

λa

dλ
√
x ′2(λ) (3)

since equation (1) is extremal for

ρ(λ) = 1

c

√
x ′2(λ). (4)

Inserting equation (4) back into equation (1) yields the classical action of equation (3). The
new actionA shares the reparametrization invariance

λ −→ f (λ) (5)

with the classical actionAcl if ρ(λ) is simultaneously changed as

ρ(λ) −→ ρ(λ)/f ′(λ). (6)

The actionA has the advantage of being quadratic in the orbital variablex(λ). Because
the physical time is analytically continued to imaginary values so that the metric becomes
Euclidean, the action looks like that of a non-relativistic particle moving as a function of a
pseudotimeλ through a(D + 1)-dimensional Euclidean spacetime, with a mass depending
on λ. We now set up a PI starting from the actionA. First, we sum over the orbital
fluctuations at a fixedρ(λ). To find the correct measure of integration, we use the canonical
formulation in which the action reads

A =
∫ λb

λa

dλ

[
−ipx ′ + ρ(λ)p

2

2M
+ Mc

2

2
ρ(λ)

]
. (7)
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After λ-slicing, the sliced action is given by

AN =
N+1∑
n=1

[
−ipn(xn − xn−1)+ εnρn p

2
n

2M
+ Mc

2

2
εnρn

]
. (8)

The measure of path integration now has the universal form∫
DD+1x

∫
DD+1p

2πh̄
=

N∏
n=1

[ ∫
dD+1xn

] N+1∏
n=1

[
dD+1pn

(2πh̄)D+1

]
. (9)

The momenta are integrated out to give (settingλN+1 ≡ λb, ρN+1 ≡ ρb)
1

√
2πh̄εbρb/M

D+1

N∏
n=1

[ ∫
dD+1xn√

2πh̄εnρn/M
D+1

]
exp

{
−1

h̄
AN
}

(10)

with the time-sliced action in configuration space

AN =
N+1∑
n=1

[
M

2εnρn
(4xn)2+ Mc

2

2
εnρn

]
. (11)

The Gaussian integrals overxn in equation (10) can now be done successively and we find

1
√

2πh̄L/Mc
D+1 exp

[
−Mc

2h̄

(xb − xa)2
L

− Mc
2h̄
L

]
(12)

whereL is the total sliced length of the orbit

L = c
N+1∑
n=1

εnρn (13)

whose continuum limit is the total invariant length of the path

L = c
∫ λb

λa

dλ ρ(λ). (14)

Remarkably, the result in equation (12) does not depend on the functionρ(λ) but only on
L. This is a reflection of the reparametrization invariance of the path integral. While the
λ-interval changes under the transformation, the total lengthL is invariant under the joint
transformations in equations (5) and (6). This invariance permits only the invariant length
L to appear in the integrated expression of equation (12), and the PI overρ(λ) can be
reduced to a simple integral overL. Therefore, the appropriate path integral for the time
evolution amplitude reads

K(xb, xa) = h̄

2Mc

∫ ∞
0

dL
∫

Dρ8[ρ]
∫

dD+1x e−A/h̄ (15)

where8[ρ] denotes a convenient gauge-fixing functional, for instance8[ρ] = δ[ρ − 1]
which fixesρ(λ) to unity everywhere. The solution of this integral is given by

K(xb, xa) = h̄

2Mc

∫ ∞
0

dL
1

√
2πh̄L/Mc

D+1 exp

[
−Mc

2h̄

(xb − xa)2
L

− Mc
2h̄
L

]
. (16)

By Fourier transforming thex-dependence, this amplitude can also be written as

K(xb, xa) = h̄

2Mc

∫ ∞
0

dL e−McL/2h̄
∫

dD+1k

(2π)D+1
exp

[
ik(xb − xa)− h̄k2

2Mc
L

]
=
∫

dD+1k

(2π)D+1

1

k2+M2c2/h̄2 eik(xb−xa). (17)
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This becomes the standard Green’s function of the Klein–Gordon field

(−∂2
b +M2c2/h̄2)K(xb, xa) = δ(D+1)(xb − xa). (18)

The fixed-energy amplitude is related to equation (15) by a Laplace transformation:

G(xb, xa;E) = i
∫ ∞
τa

dτb eE(τb−τa)K(xb, xa). (19)

Its poles and its cut along the energy axis contain information on the bound and continuous
eigenstates of the system. The fixed-energy amplitude in(D + 1)-dimensional Minkowski
space with the time componentt = −iτ = −ix4/c has the following path integral
representation [6]

G(xb,xa;E) = ih̄

2Mc

∫ ∞
0

dL
∫

Dρ8[ρ]
∫

DDxe−AE/h̄ (20)

with the action integral

AE =
∫ λb

λa

dλ

[
M

2ρ(λ)
x′2(λ)− ρ(λ) E2

2Mc2
+ ρ(λ)Mc

2

2

]
. (21)

To prove this, we write thexD+1 part of the sliced(D + 1)-dimensional action of
equation (11) in the canonical form of equation (8). Then we integrate out allxD+1

n variables,
producingn δ-functions. These remove the integrals over the momentum variablepD+1

n ,
leaving only a single integral over a commonpD+1. The Laplace transform of equation (19),
finally, removes also this integral makingpD+1 equal to−iE/c. In the continuum limit,
we thus obtain the action of equation (21).

The path integral in equation (20) forms the basis to study relativistic particles in an
external time-independent potentialV (x) by simply substituting the energyE by E−V (x).

3. The relativistic Wood–Saxon system and the relativistic step and square well
potential problems

We now consider the Wood–Saxon potential described by (e.g. [8])

V (x) = − V0

1+ e(x−b)/R
. (22)

With this potential, equation (20) becomes

G(xb, xa;E) = ih̄

2Mc

∫ ∞
0

dL
∫

Dρ 8[ρ]
∫

Dx (λ)exp

{
− 1

h̄

∫ λb

λa

dλ

[
M

2ρ(λ)
x ′2

− ρ(λ)
2Mc2

(
E + V0

1+ e(x−b)/R

)2

+ ρ(λ)Mc
2

2

]}
. (23)

This PI for x(λ) is equivalent to the non-relativistic general Rosen–Morse one [10]. If we
choose the gauge-fixing functional8[ρ] as anδ-functionalδ[ρ−1], the solution is obtained
as [1, 10]

G(xb, xa;E) = i
R

c

0(m1− s)0(1+m1+ s)
0(1+m1+m2)0(1+m1−m2)

×
[

1− tanh( xb−b2R )

2

](m1−m2)/2[
1+ tanh( xb−b2R )

2

](m1+m2)/2
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×
[

1− tanh( xa−b2R )

2

](m1−m2)/2[
1+ tanh( xa−b2R )

2

](m1+m2)/2

×2F1

[
m1− s, 1+m1+ s; 1+m1−m2;

1− tanh( x>−b2R )

2

]

×2F1

[
m1− s, 1+m1+ s; 1+m1+m2;

1+ tanh( x<−b2R )

2

]
(24)

with x>,< being the larger or smaller ofxa, xb, and b,R, V0(> 0) being constants,
respectively. The energy is contained in the parameters

m1,2 = R

h̄c

[√
M2c4− (E + V0)2±

√
M2c4− E2

]
(25)

s = − 1
2 + 1

2

√
1− 4(RV0/h̄c)2. (26)

In the limit of R → 0, the Wood–Saxon potential turns into the step potentialV (sp)(x) =
[2(x − b) − 1]V0 with the step heightV0. By taking the limitR → 0 and inserting the
asymptotic properties of the hypergeometry function

2F1(a, b; c; z ≈ 0) = 1+ z ab
c
+O(z2) (27)

2F1(a, b; c; z ≈ 1) = 0(c)0(c − b − a)
0(c − b)0(c − a)

+(z − 1)
ab

c

0(c + 1)0(c − b − a − 1)

0(c − a)0(c − b) +O[(z − 1)2] (28)

into equation (24), the relativistic fixed-energy amplitude of the step potential is found to
be

G(sp)(xb, xa;E) = 2(b − xb)2(b − xa) ih̄

2Mc

Mc√
M2c4− (E + V0)2

×e−ik(x<−b)
[

eik(x>−b) − χ + ik

χ − ik
e−ik(x>−b)

]
+2(xb − b)2(xa − b) ih̄

2Mc

Mc√
M2c4− E2

×e−χ(x>−b)
[

eχ(x<−b) + χ + ik

χ − ik
e−χ(x<−b)

]
+2(x> − b)2(b − x<) ih̄

2Mc

× 2Mc√
M2c4− (E + V0)2+

√
M2c4− E2

e−χ(x>−b)e−ik(x<−b) (29)

with χ = √M2c4− E2/h̄c, k =
√
(E + V0)2−M2c4/h̄c. The continuity and boundary

conditions of the amplitude can easily be checked.
To solve the relativistic square well problem, we first introduce an auxiliaryδ-function

term into the action of equation (20) to form an impenetrable wall [12]. Then the fixed-
energy amplitude in equation (20) becomes

G(xb, xa;E) = ih̄

2Mc

∫ ∞
0

dL
∫

Dρ8[ρ]e−
1
h̄

∫ λb
λa

dλ ρ(λ)( Mc
2

2 − E2

2Mc2
)

∫
Dxe−AE/h̄ (30)

with the auxiliary action

AE =
∫ λb

λa

dλ

[
M

2ρ(λ)
x ′2(λ)− ρ(λ)(V

2− 2VE)

2Mc2
+ ρ(λ)αδ(x − a)

]
. (31)
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Expanding theδ-function part into the power series, we obtain the perturbative series [15, 16]

G(xb, xa;E) = ih̄

2Mc

∫ ∞
0

dL
∫

Dρ8[ρ]e
− 1
h̄

∫ λb
λa

dλ ρ(λ)
(
Mc2

2 − E2

2Mc2

){
K0(xb, xa; λb − λa)

+
∞∑
n=1

(
α

h̄

)n 1

n!

n∏
i=1

[ ∫ ∞
−∞

dxi (λ)
∫ λb

λa

dλi ρ(λi)δ(xi − a)
]

×K0(x1, xa; λ1)K0(x2, x1; λ2− λ1) . . . K0(xn, xn−1; λn − λn−1)

×K0(xb, xn; λb − λn)
}

= ih̄

2Mc

∫ ∞
0

dL
∫

Dρ8[ρ]e
− 1
h̄

∫ λb
λa

dλ ρ(λ)
(
Mc2

2 − E2

2Mc2

)

×
{
K0(xb, xa; λb − λa)+

∞∑
n=1

(
α

h̄

)n ∫ λb

λa

dλn ρ(λn)
∫ λn

λa

dλn−1 ρ(λn−1)

. . .

∫ λ2

λa

dλ1 ρ(λ1)K0(a, xa; λ1)K0(a, a; λ2− λ1)

. . . K0(a, a; λn − λn−1)K0(xb, a; λb − λn)
}
. (32)

Here we have defined theλ-evolution amplitude

K0(xb, xa; λb − λa) =
∫

Dx (λ)e
− 1
h̄

∫ λb
λa

dλ
[

M
2ρ(λ) x

′2(λ)−ρ(λ) (V 2−2VE)
2Mc2

]
(33)

and ordered theλ asλ1 < λ2 < · · · < λn < λb . We now choose8[ρ] = δ[ρ − 1]. The
perturbative fixed-energy amplitude turns into

G(xb, xa;E) = ih̄

2Mc

∫ ∞
0

dL e−
1
h̄
L
c
( Mc

2

2 − E2

2Mc2
)

{
K0(xb, xa;L)

+
∞∑
n=1

(
α

h̄

)n ∫ λb

λa

dλn

∫ λn

λa

dλn−1 . . .

∫ λ2

λa

dλ1K0(a, xa; λ1)K0(a, a; λ2− λ1)

. . . K0(a, a; λn − λn−1)K0(xb, a;L/c − λn)
}
. (34)

We observe that the integration over invariant lengthL is a Laplace transformation. Because
of the convolution property of Laplace transformations, we see that

G(xb, xa;E) = G0(xb, xa;E)− G0(xb, a;E)G0(a, xa;E)
G0(a, a;E)− h̄

α

. (35)

The effect of an impenetrable wall appears atx = a when we consider the limitα→−∞
[12]. In this limit, we obtain the fixed-energy amplitude

G(wall)(xb, xa;E) = G0(xb, xa;E)− G0(xb, a;E)G0(a, xa;E)
G0(a, a;E) . (36)

Here it has been assumed thatG0(a, a;E) actually exists. The similar trick in the non-
relativistic potential problem was introduced in [12, 14, 17-19]. From equations (29) and
(36), the relativistic fixed-energy amplitude of the square well potential in the half space
x > a is given by

G(xb, xa;E)(sw) = 2(b − xb)2(b − xa) ih̄

2Mc

Mc√
M2c4− (E + V0)2
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×
{

e−ik(x<−b)
[

eik(x>−b) − χ + ik

χ − ik
e−ik(x>−b)

]
−
[

e2ik(a−b) − χ + ik

χ − ik

]−1

×
[

eik(xb−b) − χ + ik

χ − ik
e−ik(xb−b)

] [
eik(xa−b) − χ + ik

χ − ik
e−ik(xa−b)

]}
+2(xb − b)2(xa − b)

{
ih̄

2Mc

Mc√
M2c4− E2

e−χ(x>−b)

×
[

eχ(x<−b) + χ + ik

χ − ik
e−χ(x<−b)

]
− ih̄

2Mc

4Mc
√
M2c4− (E + V0)2[√

M2c4− (E + V0)2+
√
M2c4− E2

]2

×
[

e2ik(a−b) − χ + ik

χ − ik

]−1

e−χ(xb−b)e−χ(xa−b)
}

+2(x> − b)2(b − x<) ih̄

2Mc

2Mc√
M2c4− (E + V0)2+

√
M2c4− E2

×
{

e−χ(x>−b)e−ik(x<−b) −
[

e2ik(a−b) − χ + ik

χ − ik

]−1

×
[

eik(x<−b) − χ + ik

χ − ik
e−ik(x<−b)

]
e−χ(x>−b)

}
. (37)

Again, the continuity and boundary conditions are easily checked. The bound state energy
[9] is determined by the poles of equation (37) and is given by

k/χ = − tank(b − a). (38)

Before closing this paper, we stress that by introducing the external steady Wood–Saxon
potential the relativistic invariance is violated.

4. Conclusion

The fixed-energy amplitude of the relativistic Wood–Saxon potential systems has been solved
by Kleinert’s path integral approach to relativistic potential problems. From the solution,
the fixed-energy amplitudes of the relativistic step and the square well potentials are also
obtained by suitable limits and auxiliaryδ-function perturbation, respectively. As a physical
application of equations (24) and (36), we make an impenetrable wall atx = a for relativisitc
particles which move in the Wood–Saxon potential. This model has been used to describe
the interaction of a neutron with a heavy nucleus [8, 20]. The parameterb is the nuclear
radius, and the parameterR determines the thickness of a surface layer in which the potential
falls off from V = 0 outside toV = −V0 inside the nucleus.

With a spherically shapedδ-function perturbation, there is a simple generalization for
equation (36) if the external potentials are spherical symmetric. In this case, equation (36)
becomes

G(wall)(rb, ra;E) = G0(rb, ra;E)− G0(rb, a;E)G0(a, ra;E)
G0(a, a;E) (39)

where the pure relativistic radial fixed-energy amplitude inD dimensions is given by [1, 5]

G0(rb, ra;E, l) = ih̄

2Mc

∫ ∞
0

dL
∫

Dρ8[ρ]
∫

Dr(λ) exp

{
−1

h̄
Al [r, r

′]
}

(40)
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with the action

Al [r, r
′] =

∫ λb

λa

dλ

[
M

2ρ(λ)
r ′2(λ)+ ρ(λ)h̄

2

2M

(l +D/2− 1)2− 1
4

r2

− ρ(λ)
2Mc2

[E − V (r)]2+ ρ(λ)Mc
2

2

]
. (41)

It is worth noting that we must requirea 6= 0. From equation (41), one can easily discuss
a relativistic spinless system with many constraints such as rings, radial boxes, etc.

We hope that the methods developed here are useful for obtaining other relativistic
fixed-energy amplitudes by path integral.
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